

Baie de l'Aiguillon

Restauration des fonctionnalités environnementales du littoral en contexte conchylicole

Restoration of coastal environmental functions in a shellfish farming area

Forum des Pertuis, La Rochelle

Large-Scale Oyster Restoration in Chesapeake Bay, Atlantic Coast, USA

Stephanie Westby

National Oceanic and Atmospheric Administration

Issue

- Chesapeake Bay's oyster (Crassostria virginica) population is at 1% of historic levels.
- Oyster reefs provide fish habitat and water filtration, among other ecosystem services.
- Ecosystem services are diminished along with the population.

Goal

2014 Chesapeake Bay Watershed Agreement

 Signed by state governments in the Chesapeake Bay watershed and the federal government

Called for:

• Restoring oysters in 10 Chesapeake tributaries by 2025, and ensuring their protection.

First, we set success criteria: How did we define a 'restored' reef', and a 'restored tributary'? 1

- Team of scientists, resource managers, and academics
- Success criteria were informed by science, but ultimately set by consensus.
- Reef-level success criteria: oysters per m², reef structure, persistence, etc.
- Tributary-level success criteria: how many successful reefs do you need in a tributary before that tributary is 'restored'?

Success Criteria:

Reef level:

Oyster density:

- Min = 15 oysters per m² over 30% of the reef
- Target = 50 oysters per m² over 30% of the reef

Oyster biomass:

- Min = 15 g dry tissue weight per m² over 30% of the reef
- Target = 50 g dry tissue weight per m² over 30% of the reef

Multiple year classes: present

Shell budget: stable or increasing

Reef height: stable or increasing

Reef footprint: stable or increasing

Tributary level:

Two-prong test for a restored tributary:

- 1) Successful reefs covering at least 50 'currently restorable oyster habitat'
 - Good water quality
 - Seafloor suitable for reef construction
- 2) Successful reefs covering at least 8% of historic oyster bottom

- Set goa
- Set success criteria
- Select tributaries
- Plan
- Implement
- Monitor relative to success criteria
- Quantify
 ecosystem
 services and
 determine
 economic impact
- Adapt

- Set goa
- Set success criteria
- Select tributaries
- Plan
- Implement
- Monitor relative to success criteria
- Quantify
 ecosystem
 services and
 determine
 economic impact
- Adapt

- Set goa
- Set success criteria
- Select tributaries
- Plan
- Implement
- Monitor relative to success criteria
- Quantify ecosystem services and determine economic impact
- Adapt

- Set goa
- Set success criteria
- Select tributaries
- Plan
- Implement
- Monitor relative to success
 criteria
- Quantify ecosystem services and determine economic impact
- Adapt

- Understand river bottom quality
- Understand existing oyster population distribution

- Set goal
- Set success criteria
- Select tributaries
- Plan
- Implement
- Monitor relative to success
- Quantify
 ecosystem
 services and
 determine
 economic impact
- Adapt

- Understand river bottom quality
- Understand existing oyster population distribution
- Outreach to stakeholders, scientific community, public

- Set goal
- Set success criteria
- Select tributaries
- Plan
- Implement
- Monitor relative to success
- Quantify
 ecosystem
 services and
 determine
 economic impact
- Adapt

- Understand river bottom quality
- Understand existing oyster population distribution
- Outreach to stakeholders, scientific community, public

Complete restoration plan¹

1. Harris Creek Oyster Restoration Tributary Plan: A blueprint to restore the oyster population in Harris Creek, a tributary of the Choptank River on Maryland's Eastern Shore,

https://www.chesapeakebay.net/documents/Oyster Restoration Blueprint H arris Creek 1.13 2.pdf

- Set goal
- Set success criteria
- Select tributaries
- Plan
- Implement
- Monitor relative
 to success
 criteria
- Quantify
 ecosystem
 services and
 determine
 economic impact
- Adapt

Reef Restoration Techniques

Oyster seed only

Substrate only
Substrate and seed

 Used in low natural recruitment areas (low oyster reproduction)

 Hatchery-produced oysters are planted onto existing reefs to increase oyster populations 'Spat-on-shell' (juvenile oysters attached to shell)

Oysters are produced at University of Maryland's oyster hatchery

Reef Restoration Techniques

Oyster seed only

Substrate only

Substrate and seed

- Used where natural recruitment is high (no seed is required)
- Used where reef structure needs to be improved
- Substrates used are primarily shell and stone

ça ç'est mon pied

Reef Treatments:

- Oyster seed only
- Substrate only
- Substrate and seed

- Set goa
- Set success criteria
- Select tributaries
- Plan
- Implement
- Monitor relative to success criteria
- Quantify
 ecosystem
 services and
 determine
 economic impact
- Adapt

Harris Creek Oyster Restoration: Scale

- 142 hectares of reefs
- 2.5 billion 'spat' (juvenile oysters) planted
- Cost: US\$29 million
- Thought to be the world's largest sanctuary (nonharvest) oyster restoration project

Before restoration

After restoration

- Set goal
- Set success criteria
- Select tributaries
- Plan
- Implement
- Monitor relative to success criteria
- Quantify
 ecosystem
 services and
 determine
 economic impact
- Adapt

- Reefs are monitored 3 years and 6 years after restoration
- 97% of 6-year-old reefs meet oyster density success criterion
- Other success metrics show similar results

- Set goal
- Set success criteria
- Select tributaries
- Plan
- Implement
- Monitor relative to success criteria
- Quantify
 ecosystem
 services and
 determine
 economic impact
- Adapt

Harris Creek

- Restored reefs annually remove:
 - 45,000 kg of nitrogen
 - 2,130 kg phosphorous
- Estimated US\$3 million annually in nitrogen and phosphorous reductions1
- Restoration cost: \$29 million

<u>Harris Creek and two nearby tributaries</u> combined

- Fully mature reefs (10 years post restoration), relative to pre-restoration status, are predicted to²:
 - Generate 160% increase in blue crab harvest
 - Increase annual dockside fisheries by \$11 million annually ('direct effect')
 - Increase annual total regional economic impact by \$23 million annually ('direct + indirect + induced effects')
 - Restoration cost to date: \$55 million

Progress toward restoring oysters in 10 Chesapeake Bay tributaries

- Three tributaries complete
- 390 hectares restored
- Cost: US\$62 million

- Set goal
- Set success criteria
- Select tributaries
- Plan
- Implement
- Monitor relative to success criteria
- Quantify
 ecosystem
 services and
 determine
 economic impact
- Adapt

What have we learned?

Oyster restoration is expensive.

- ...and the ecosystem services value may make it a good investment.
- ...and conserving what you have is probably better and less expensive.

Oysters do well on stone reefs

- People, however, don't always like stone reefs.
- ...especially when your contractor piles it too high and boats run aground on it.

Pre-established success criteria, common goals, extensive partnerships, and planning are difficult but seem to be worthwhile.

Not everyone loves this. (What?!?)

Les huîtres sont faciles. Les gens sont difficiles.

Thank you, and thank you to our many partners.

Stephanie Reynolds Westby NOAA Restoration Center stephanie.westby@noaa.gov

Partners

...and many more

Outline

- Map
- Issue
- Background/ policy drivers

